Analytical sequence to study G-CSF effect on the transcriptome of isolated spinal motoneurons from SOD1 G93A mice, an animal model for amyotrophic lateral sclerosis

نویسندگان

  • Alexandre Henriques
  • Stefan Kastner
  • Oliver Wafzig
  • Jose-Luis Gonzalez De Aguilar
  • Armin Schneider
چکیده

Granulocyte-colony stimulating factor (G-CSF) has been recently identified as a neurotrophic factor able to preserve motor functions, rescue motor units and extent survival in an animal model of amyotrophic lateral sclerosis, the SOD1 G93A mice. To gain insight into the mode of action of G-CSF, we have recently performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, and shown that G-CSF re-adjusted gene expression in motoneurons of symptomatic SOD1G93A mice and modulates genes related to neuromuscular function (Henriques et al., 2015). Here, we provide quality controls for the microarray experiment (GO accession number GSE60856) and describe the experimental strategy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF

BACKGROUND Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3-5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clin...

متن کامل

Glycine receptor channels in spinal motoneurons are abnormal in a transgenic mouse model of amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis (ALS) is a rapidly evolving and fatal adult-onset neurological disease characterized by progressive degeneration of motoneurons. Our previous study showed that glycinergic innervation of spinal motoneurons is deficient in an ALS mouse model expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). In this study, we have exa...

متن کامل

Induction of c-Jun immunoreactivity in spinal cord and brainstem neurons in a transgenic mouse model for amyotrophic lateral sclerosis.

Transgenic mice carrying amyotrophic lateral sclerosis (ALS)-linked superoxide dismutase 1 (SOD1) mutations develop a motoneuron disease resembling human ALS. c-Jun is a transcription factor frequently induced in injured neurons. In this study we have examined the distribution of c-Jun-immunoreactivity in the brainstem and spinal cord of transgenic SOD1 mice with a glycine 93 alanine (G93A) mut...

متن کامل

Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 1-5 years after disease onset. Therapeutic options remain limited despite a substantial number of approaches that have been tested clinically. In particular, various neurotrophic factors have been investigated. Failure in these trials ha...

متن کامل

Ablation of P2X7 receptor exacerbates gliosis and motoneuron death in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disorder characterized by selective degeneration of upper and lower motoneurons. The primary triggers for motoneuron degeneration are still unknown, but inflammation is considered an important contributing factor. P2X7 receptor is a key player in microglia response to toxic insults and was previously shown to increase pro-inflamm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015